
Automatic Construction of Name-Bound Virtual Networks
for IoT�

Kenji Fujikawa <hudikaha@nict.go.jp>
Ved P. Kafle,

Pedro Martinez-Julia,
Abu Hena Al Muktadir

Hiroaki Harai

National Institute of Information and Communications Technology
(NICT)

��2017/11/16�

Contents�

n Backgrounds
Ø Who specifies the names of IoT devices?
Ø Who operates naming and addressing for VNs?

n Objectives of Name-Bound Virtual Network (NBVN)
n Proposal of Business Players ASP/VNO/InP Roles and

Interactions
n Example Construction of NBVN (a Bike Race Network)

Ø VNO Configuration
Ø ASP’s request to VNO
Ø Request from VNO (vno.rb) to InP1 (inb.rb)
Ø Executed Vnn.rb Command on Each Node
Ø Assigned Names/Addresses to be Used within the NBVN

n Example Construction of Multiple NBVNs on the Shared
Infrastructure

n Conclusions and Future work
��2017/11/16�

OMA-TS-LightweightM2M-V1_0-20170208-A Page 77 (138)

� 2017 Open Mobile Alliance All Rights Reserved.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-Spec-20170101-I]

Note: Throughout the present document the format of the MSISDN must be as specified in [3GPP-TS_23.003]. According to
this definition “+” is not preceding the country code.

LwM2M
Client

LwM2M
Server

POST/rd?ep=example-client

2.01 Created Location: /rd/5a3f

POST/rd/5a3f?It=600000

Registration

2.04 Changed

DELETE /rd/5a3f

2.02 Deleted

</1/1>,</1/2>,</2/0></2/1>,</3/0>,</4/0>

Update

De-register

Figure 21: Example register, update and de-register operation exchanges (shorthand in [CoAP] example style, actual
messages using CoAP binary headers)

8.2.5 Device Management & Service Enablement Interface
The Device Management & Service Enablement Interface is used to access Resource, an array of Resource Instances, an
Object Instance or all the Object Instances of an Object. An Object Instance is identified by the path /{Object ID}/{Object
Instance ID}. If Object doesn’t support multiple Object Instances, the Object Instance is identified by the path /{Object ID}/0.
A Resource is identified by the path /{Object ID}/{Object Instance ID}/{Resource ID}.

An Object Instance or Resource is Read by sending a CoAP GET to the corresponding path. The response includes the value
in the corresponding Plain Text, Opaque, TLV or JSON format according to the specified Content-Format (see section
6.4).The request MAY specify an Accept option containing the preferred Content-Format to receive. When the specified
Content-Format is not supported by the LwM2M Client, the request MUST be rejected.

An Object Instance or Resource is Written to by sending either a CoAP PUT or a CoAP POST to the corresponding path. The
request includes the value to be written in the corresponding Plain Text, Opaque, TLV or JSON format according to the
Content-Format option which MUST be specified [CoAP]. The Write request MUST be rejected when the specified Content-
Format is not supported by the LwM2M Client

A CoAP PUT is used for the Replace and CoAP POST is used for Partial Update mechanism of the “Write” operation as
described in 5.4.3.

A Resource is Executed by sending a CoAP POST to the corresponding path. The request MAY include a list of arguments
as value of the payload expressed in Plain Text format. The definition of the Executable Resource and its arguments is given
in Appendix D.

The list of argument can be empty, 2 arguments of the arguments list are separated by a comma. The syntax of the arguments
is provided in Section Execute (5.2.4).

Note that the behaviour of the “Execute” operation, whether it uses arguments and how those are interpreted, and how it
returns values is specified in the Resource description of the Object.

Backgrounds (1)�
n  Networks are constructed for

various IoT services
Ø  e.g. connected vehicles and

smart city, etc.

n  IoT communication APIs are

defined by some organizations
Ø  IoT devices are recognized by

names
Ø  Who specifies the names of IoT

devices when constructing IoT
network using a virtual network?

2017/11/16� ��

server1.example.com�example-client�

 Who specifies the
names of IoT devices?�

[1] OMA Alliance, Lightweight Machine to
Machine Technical Specification, Approved
Version 1.0 – 08 Feb 2017�

Backgrounds (2)�
n  Business players for

constructing Virtual Networks
(VNs) are defined [2]
Ø Service Provider (SP)
Ø Virtual Network Operator (VNO)
Ø Virtual Network Provider (VNP)
Ø Physical Infrastructure Provider

(PIP)

n  It is not clear who operates
naming, addressing, and
configuration of name
resolution system for the
constructed VN?
Ø  Is the human network manager

of VNO responsible for these
operations? �

2017/11/16� ��

[2] G. Schaffrath, at el., ``Network Virtualization
Architecture: proposal and initial prototype,'’
Proc. of the 1st ACM workshop on Virtualized
infrastructure systems and architectures, 2009.�

Figure 2: Interfaces between players

Lets consider how the proposed GENI architecture [16] fits within
our framework. The GENI clearinghouse is a VNP. The experi-
menter is the VNO and if they desire the SP. As such GENI also
realizes the split between PIP and VNP. However, as GENI does
not yet consider federation it does not consider the implications of
having to handle multiple PIPs.

3. VNET CONTROL ARCHITECTURE
In this section, we introduce our VNet Control Plane Architec-

ture which provides the control and management functions for the
virtual network architecture to the various actors. The control plane
must perform a balancing act between the following tussles:

• Information disclosure against information hiding.

• Centralization of configuration and control against delega-
tion of configuration and control.

The information disclosure tussle is a subtle one and we will try to
illustrate this through a couple of scenarios. The first scenario is
accounting where each customer needs to be able to satisfy them-
selves that they are getting their contractual requirements without
the provider releasing sensitive information to them or others. For
example, a customer can request certain Quality of Service (QoS)
guarantees across the PIP’s network without any information on
the exact physical path. The second scenario, which is arguably the
most challenging is network debugging. It is a complex problem to
provide enough information to, for example, a VNO to enable them
to debug a problem with the physical path in PIP without providing
too much information.
Where configuration and control are undertaken is another tussle.

For example, the PIP should be able to render/delegate low level
management of the virtualized network components via the VNP
to a VNO, whilst hiding it from another VNO.

3.1 Control Interfaces
In the following we identify the control interfaces (see Figure 2)

in our architecture by discussing how the various players interact
in order to setup a VNet.
To begin with, the SP hands the VNO his requirements. Then

the VNO needs to add his requirements and any constraints he im-
poses on the VNet. This description is subsequently provided (via

Interface 1) to the VNP of his choice, which is in charge of as-
sembling the VNet. The VNP may split the request among several
PIPs, e.g., by using knowledge about their geographic footprints,
and send parts of the overall description to the selected PIPs (via
Interface 2). This negotiation may require multiple steps. Finally,
the VNP decides which resources to use from which PIP and in-
structs the PIPs to set up their part, i.e., virtual nodes and virtual
links, of the VNet (Interface 3). Now, all parts of the VNet are
instantiated within each PIP but they may still have to be intercon-
nected (Interface 4). The setup of virtual links between PIPs—in
contrast to Interface 3—needs to be standardized in order to allow
for interoperability across PIP domains. Once the whole VNet has
been assembled, the VNO is given access to it (Interface 5). This
interface is also called “Out-of-VNet” access and is necessary as,
at this point in time, the virtual network itself is not yet in opera-
tion. Thus, a management interface outside of the virtual network
is needed. Once the virtual network has been fully configured by
the VNO and the service is running, end-users can connect to the
virtual network (Interface 6).
We now discuss how each player benefits from this virtualization

architecture: PIPs can better account for the constraints imposed by
the VNets. For example, before scheduling maintenance work or
for traffic engineering purposes, they might migrate some virtual
nodes to minimize downtime or to optimize their traffic flow. This
is possible as long as the the new location is embedding-equivalent,
i.e., satisfies all of the requirements and imposed constraints, and
enabled by the level of indirection introduced by our architecture
and the use of modern migration mechanisms[18, 10]. For VNPs,
migration between PIPs offers a mechanism to optimize their rev-
enue by choosing competitive and reliable PIPs. As pointed out by
[20], the removal of the requirement for individual negotiations be-
tween VNOs and all participating PIPs facilitates the entry of new
players into the market. Furthermore, SPs may outsource non ser-
vice specific network operation tasks to other entities and thereby
concentrate on their core interests relating to their respective busi-
ness model. Migration processes are transparent to the VNOs. Note
that they cannot trigger migration directly; however, by altering
their requirements, VNOs may indirectly initiate resource migra-
tion.

3.2 VNet Instantiation
Setting up a VNet, see Figure 3 (a), starts from a VNet specifi-

cation. For this we need resource description languages for both
the VNet topology, including link/node properties, as well as ser-
vice level requirements. These description languages should nei-
ther be too constrained – to allow the VNP and the PIPs freedom
for optimizations – nor too vague – to enable a precise specifica-
tion. Therefore it is out of scope for this paper.
To setup the VNet each player, for its domain, has to: formulate

resource requirements, discover potential resources and partners,
negotiate with this partners based on VNet resource description,
and construct the topology.

SP: The SP specifies his service specific requirements whichmight
include a VNet topology. In addition, he may specify the
kind of interface it needs for service deployment and mainte-
nance, e.g., what level of console access. He then delegates
the instantiation to the VNO of its choice. Once the VNet
is instantiated the SP deploys his service using the interface
provided by the VNO.

VNO: The VNO uses the specification it receives from the SP and
generates a VNet specification. It then negotiates with var-
ious VNPs on the basis of the VNet specification. Once a
VNP is selected the VNO has to wait for the VNP to assem-

 Who operates naming
and addressing for VNs?�

→ Propose a method for automatic construction of VNs with named
components and name resolution system,
called Name-Bound Virtual Network (NBVN)

Objectives of NBVN (Name-Bound Virtual Network)�

n Construct NBVNs for IoT services such as outdoor
concerts and sporting events
Ø Those services are area-bound

and time-bound
(may last for hours or days)

Ø Quick construction is required
Ø Automation is important

In this presentation:
n For the automatic construction of NBVNs, re-define

business players, and propose their roles and interactions
between them
Ø Especially, clarify which player operates naming, addressing and

construction of a name resolution mechanism for NBVNs
Ø Manual operations are avoided as far as possible

n Design and Implement a simple proof-of-concept system
2017/11/16� ��

Access point 1� AP3

Router�

Server AP4

Bike

Audience

Switch

AP2

Bike race event NBVN

Business Players
and Information Flows�
n  Re-define business players

Ø Application Service Provider (ASP)
Ø Virtual Network Operator (VNO)
Ø  Infrastructure Provider (InP)

�

2017/11/16� ��InP A InP B

ASP	#1	

VNO	#1	 VNO	#2	

ASP	#21	 ASP	#22	

NBVN
#1

NBVN
#22

NBVN
#21

Proposal of ASP/VNO/InP Roles and
Interactions�
n  ASP manager specifies

access point locations and
storage/computational
server specifications

n  VNO specifies network
nodes and servers with
names to be used in NBVN
Ø  Addresses/names are

automatically assigned

2017/11/16� 	�

	
ASP	
	
	

InP2	
	
	

VNO	
	
	

(2)	Request:	
l  AP	loca>ons	
l  specs	of	servers	
l  network	resources	
l  event	dura>on	

(3)	Request:	
l  names	of	APs	
l  names	and	specs	

of	servers	
l  network	resources	
l  dura>on	

(1)	Inform	in	advance:	
l  names	and	loca>ons	

of	APs	
l  names	and	specs	

of	servers	
l  rough	informa>on	

of	network	resources	

Network manager of
ASP, VNO or InP

Server of VNO, InP
or NBVN

operate

InP1	
	
	

operate operate

operate NBVN
nodes by names

recognize/operate
NBVN servers by
names

IoT	devices	
use	names	for	
communica>on	

NBVN
#21

Proposal of ASP/VNO/InP Roles and
Interactions�
n  ASP manager specifies

access point locations and
storage/computational
server specifications

n  VNO specifies network
nodes and servers with
names to be used in NBVN
Ø  Addresses/names are

automatically assigned

2017/11/16�
�

	
ASP	
	
	

InP2	
	
	

VNO	
	
	

(2)	Request:	
l  AP	loca>ons	
l  specs	of	servers	
l  network	resources	
l  dura>on	

(3)	Request:	
l  names	of	APs	
l  names	and	specs	

of	servers	
l  network	resources	
l  dura>on	

(1)	Inform	in	advance:	
l  names	and	loca>ons	

of	APs	
l  names	and	specs	

of	servers	
l  rough	informa>on	

of	network	resources	

Network manager of
ASP, VNO or InP

Server of VNO, InP
or NBVN

operate

InP1	
	
	

operate operate

operate NBVN
nodes by names

IoT	devices	
use	names	for	
communica>on	

NBVN
#21 n  Clarify the way to specify AP locations for

area-bound event network services
n  Automatic construction of NBVNs realizes

time-bound event network services�
Ø  Clear definitions of the roles of ASP/VNO/INP

and interactions between them enable
automatic construction of NBVN

recognize/operate
NBVN servers by
names

Example Construction of NBVN
(a Bike Race Event Network)�

n  Network node names are assigned by VNO
Ø  e.g. ap101.race1 sv101.race1

n  IoT device names are assigned according to the AP names
Ø  e.g. mb1.ap101.race1 mb2.ap101.race1 �

2017/11/16� ��

SV1	
(sv101.race1)	

AP1	
(ap101.race1)	

AP4	
(ap102.race1)	

	

AP5	
(ap103.race1)	

	

AP6	
(ap104.race1)	

RT1	
(rt1.inp1.race1)	

	

AP3	
(ap106.race1)	

AP1	
(ap105.race1)	

AP4	
(ap4.inp2.race1)	

AP5	
(ap107.race1)	

	

AP6	
(ap108.race1)	

RT1	
(rt1.inp2.race1)	

	 SW1	
(sw1.inp2.race1)	

SV1	
(sv102.race1)	SW1	

(sw1.inp1.race1)	

IoT	device	
(mb1.ap101.race1)	

Mobile	terminal	
(mb2.ap101.race1)	

Infrastructure Networks�

n Each InP assigns names to network nodes within the InP
Ø Note that ASP can assign different names in NBVN�

2017/11/16� ���

AP1 AP2 AP3 AP4 AP5 AP6

RT1

SW1

SV1 AP1 AP2 AP3 AP4 AP5 AP6

RT1

SW1

SV1

InP1 InP2
VNO1

INP1 INP2

SV1: Server (for service in NBVN)
RT1: L3 router
SW1: L3 switch
AP1-AP6: Access points
INP1,INP2: InP server (for management)
VNO1: VNO server (for management)

Developed Programs (Ruby Scripts)�

n vnn.rb: Virtual Network Node Script
n  inp.rb: Infrastructure Provider Server Script
n vno.rb: Virtual Network Operator Server Script

Ø Read JSON- or YAML-formated data�

2017/11/16� ���

AP1	 AP2	 AP3	 AP4	 AP5	 AP6	

RT1	

SW1	

SV1	

VNO1	

INP1	

vno.rb	

inp.rb	

vnn.rb	

vnn.rb	

vnn.rb	

vnn.rb	

vnn.rb	

vnn.rb	 vnn.rb	 vnn.rb	 vnn.rb	 vnn.rb	 vnn.rb	

n  Vno.rb is configured with information about InP servers (inp.rb), AP names
and locations, computational/storage server names and specs
Ø  This information should be automatically

sent from InP to VNO in the future

vno1# cat vno1.conf
 inp:
 - { name: inp1.inp1, port: 4001 }
 - { name: inp2.inp1, port: 4001 }
 accesspoint:
 - { name: ap1.inp1, latitude: 3, longitude: 1 }
 - { name: ap2.inp1, latitude: 1, longitude: 1 }
 - { name: ap3.inp1, latitude: 1, longitude: 2 }
 - { name: ap4.inp1, latitude: 3, longitude: 2 }
 - { name: ap5.inp1, latitude: 2, longitude: 3 }
 - { name: ap6.inp1, latitude: 2, longitude: 4 }
 - { name: ap1.inp2, latitude: 3, longitude: 5 }
 - { name: ap2.inp2, latitude: 1, longitude: 5 }
 - { name: ap3.inp2, latitude: 1, longitude: 6 }
 - { name: ap4.inp2, latitude: 3, longitude: 6 }
 - { name: ap5.inp2, latitude: 2, longitude: 7 }
 - { name: ap6.inp2, latitude: 2, longitude: 8 }
 server:
 - { name: sv1.inp1, memory: 4G, hdd: 10G }
 - { name: sv1.inp2, memory: 4G, hdd: 10G }
 vno1# ./vno.rb --port 4000 --conf vno1.conf

VNO Configuration (vno.rb)�

2017/11/16�

1	

2	

3	

Longitude

La
tit

ud
e

AP1							 AP4	

AP5	 AP6			

AP2	 AP3	

AP1							 AP4	

AP5	 AP6				

AP2	 AP3	

InP1	 InP2	

1	 2	 3	 4	 5 6	 7	 8	

InP1	
	
	

VNO	
	
	

(1)	Inform	in	advance:	
l  names	and	loca>ons	

of	APs	
l  names	and	specs	

of	servers	
l  rough	informa>on	

of	network	resources	

operate

operate

Names assigned
by InPs�

���

Access Points Required for a Bike Race Event�
n  AP locations from

the satellite view

n  APs required for
covering a bike
race event�

2017/11/16�

Longitude

La
tit

ud
e

AP1							 AP4	

AP5	 AP6			

AP2	 AP3	

AP1							 AP4	

AP5	 AP6				

AP2	 AP3	
1	

2	

3	

InP1	 InP2	

Longitude

La
tit

ud
e

AP1							 AP4	

AP5	 AP6			 AP5	 AP6				

AP2	 AP3	

1	 2	 3	 4	 5	 6	 7	 8	

1	

2	

3	

InP1	 InP2	

���

n  ASP sends a request to VNO
Ø The network manager of ASP grasps the required locations for the

access points, however does not know the names of the access
points in those locations

 asp# cat race1.conf
 event: race1
 accesspoint:
 - { latitude: 3, longitude: 1 }
 - { latitude: 3, longitude: 2 }
 - { latitude: 2, longitude: 3 }
 - { latitude: 2, longitude: 4 }
 - { latitude: 1, longitude: 5 }
 - { latitude: 1, longitude: 6 }
 - { latitude: 2, longitude: 7 }
 - { latitude: 2, longitude: 8 }
 server:
 - { memory: 4G, hdd: 10G }
 - { memory: 4G, hdd: 10G }
 duration:
 from: 2016-05-31 06:00:00 +09:00
 to: 2016-05-31 12:00:00 +09:00
 asp# curl -X POST --data-binary @race1.conf \
 -H "Content-type: text/x-yaml" \
 http://vno1.somewhere:4000/
 asp#

�

ASP’s request to VNO (vnn.rb) �

2017/11/16� ���

ASP	
	
	

VNO	
	
	

(2)	Request:	
l  AP	loca>ons	
l  specs	of	servers	
l  network	resources	
l  dura>on	

operate

Ø  Include location info
Ø  Does not include names

of APs or servers�

Request from VNO (vno.rb)
to InP1 (inb.rb)�
n  Request includes actual names of access point and server names in InP1

 domain: race1
 vnno: 3
 accesspoint:
 - { nodename: ap101, name: ap1.inp1 }
 - { nodename: ap102, name: ap4.inp1 }
 - { nodename: ap103, name: ap5.inp1 }
 - { nodename: ap104, name: ap6.inp1 }
 server:
 nodename: sv101
 name: sv1.inp1
 memory: 4G
 hdd: 10G
 offer: yes
 duration:
 from: 2016-05-31 06:00:00.000000000 +09:00
 to: 2016-05-31 12:00:00.000000000 +09:00

�

2017/11/16� ���

VNO	
	
	

operate

InP1	
	
	

operate

(3)	Request:	
l  names	of	APs	
l  names	and	specs	

of	servers	
l  network	resources	
l  dura>on	

Names assigned
by InPs in advance�

VNO specifies
new names�

Executed Vnn.rb Command on Each Node
and Assigned Names/Addresses to be Used within the NBVN �
n  InP1 executes vnn.rb on each node

 sv1.inp1# vnn.rb –nodename sv101 --vnno 3 --domain race1 --offer eth1
 ap1.inp1# vnn.rb --nodename ap101 --vnno 3 --req eth1 --dhcps eth3
 ap4.inp1# vnn.rb --nodename ap102 --vnno 3 --req eth1,eth2 --dhcps eth3
 ap5.inp1# vnn.rb --nodename ap103 --vnno 3 --req eth1,eth2 --dhcps eth3
 ap6.inp1# vnn.rb --nodename ap104 --vnno 3 --req eth1 --dhcps eth3

n  IPv6 addresses are automatically assigned to all the network nodes
n  IPv6 forwarding tables are also configured
n  Name resolution system (DNS) is simultaneously/automatically configured

sv101.race1. 300 IN AAAA 2002:db8:3:2::3
ap101.race1. 300 IN AAAA 2002:db8:3:5::4
ap102.race1. 300 IN AAAA 2002:db8:3:3::5
ap103.race1. 300 IN AAAA 2002:db8:3:7::6
ap104.race1. 300 IN AAAA 2002:db8:3:8::7
mb1.ap101.race1. 300 IN AAAA 2002:db8:3:6::2
mb2.ap101.race1. 300 IN AAAA 2002:db8:3:6::2

�

2017/11/16� ���

Names assigned
by InPs in advance�

Names specified by VNO
These names are used within NBVN�

Names specified
by VNO�

Names for IoT devices, of which
base name is specified by VNO�

Constructed Bike Race Network�

n  We validated that our proposed system practically constructs NBVNs
that are used for area/time-bound events

n  It is expected to take tens of minutes to construct the NBVN for the
event of tens of thousands attendees from our PoC net experiments

2017/11/16� �	�

SV1	
(sv1.inp1.race1)	

InP1	 InP2	

NBVN	#3	for	bike	race	event	(2002:db8:3::/48)	

AP1	
(ap101.race1)	

AP4	
(ap102.race1)	

	

AP5	
(ap3.race1)	

	

AP6	
(ap104.race1)	

RT1	
(rt1.inp1.race1)	

	

AP3	
(ap106.race1)	

AP1	
(ap105.race1)	

AP4	
(ap4.inp2.race1)	

AP5	
(ap107.race1)	

	

AP6	
(ap108.race1)	

RT1	
(rt1.inp2.race1)	

	 SW1	
(sw1.inp2.race1)	

SV1	
(sv1.inp2.race1)	SW1	

(sw1.inp1.race1)	

V. SYSTEM EVALUATION

We used two physical machines to validate the operation
of the proof-of-concept network. Two InPs, InP1 and InP2,
are constructed on two physical machines. They have 11 and
10 virtual machines (VMs), respectively. 21 VMs become
network nodes shown in Fig. 4. Each physical machine is
equipped with dual Intel Xeon X5670 (2.93GHz/6 core),
64GBytes memory, and two GbE network interfaces. All the
VMs are connected to a single L2 switch using one of the
GbE interfaces. All the point-to-point links depicted in Fig. 4
are defined by Generic Routing Encapsulation (GRE) tunnels.

rt1$ ip addr show
(snip)
10: greth1@NONE: <BROADCAST,MULTICAST> mtu 1462...

link/ether ba:6b:4c:9a:34:6a brd ff:ff:ff:f...
inet6 2002:db8:3:1::1/64 scope global tenta...

valid_lft forever preferred_lft forever
inet6 2002:db8:4:1::1/64 scope global tenta...

valid_lft forever preferred_lft forever
11: greth2@NONE: <BROADCAST,MULTICAST> mtu 1462...

link/ether 22:5a:f3:41:8e:d2 brd ff:ff:ff:f...
inet6 2002:db8:3:2::1/64 scope global tenta...

valid_lft forever preferred_lft forever
12: greth3@NONE: <BROADCAST,MULTICAST> mtu 1462...

link/ether 46:26:05:73:c9:7d brd ff:ff:ff:f...
inet6 2002:db8:3:3::1/64 scope global tenta...

valid_lft forever preferred_lft forever
(snip)
15: greth6@NONE: <BROADCAST,MULTICAST> mtu 1462...

link/ether fe:ce:f6:33:a9:b4 brd ff:ff:ff:f...
inet6 2002:db8:3:4::1/64 scope global tenta...

valid_lft forever preferred_lft forever
rt1$ ip -6 route show
2002:db8:3:1::1 dev greth1 proto kernel metri...
2002:db8:3:2::1 dev greth2 proto kernel metri...
2002:db8:3:3::1 dev greth3 proto kernel metri...
2002:db8:3:4::1 dev greth6 proto kernel metri...
2002:db8:3:5::/64 dev greth1 metric 1024 mtu ...
2002:db8:3:6::/64 dev greth1 metric 1024 mtu ...
2002:db8:3:7::/64 dev greth3 metric 1024 mtu ...
2002:db8:3:8::/64 dev greth3 metric 1024 mtu ...
2002:db8:3:9::/64 dev greth3 metric 1024 mtu ...
2002:db8:3:a::/64 dev greth3 metric 1024 mtu ...
(snip)
2002:db8:4:1::1 dev greth1 proto kernel metri...
2002:db8:4:2::/64 dev greth1 metric 1024 mtu ...
(snip)
rt1$

Fig. 15. Interface addresses and FIB on RT1

TABLE II
SYSTEM EVALUATION

DNS entries IP addresses Construction time of NBVN (sec)
15 (+1600) 36 (+1600) 52.18 (avg. 3.48)

Fig. 15 shows the interface address and FIB on RT1.
The interface addresses shown in Table I are assigned to
interfaces greth1, greth2, greth3 and greth6, which are GRE
interfaces. As shown in Fig. 15, routing entries that start with
2002:db8:3 are configured with domain name of race1 and
VNNO of 3. We also configured another NBVN that consists
of RT1, SW1 and SV1, with domain name of dc1 (which
means data center 1) and VNNO of 4. Simultaneously, IPv6
address of 2002:db8:4:1::1 is assigned to interface greth1, and
routing entries that start with 2002:db8:4 are configured. These

configurations prove that our proposed system automatically
configures IP addresses and FIB on each NBVN node, and that
data packets that belong to different NBVNs are distinguished
and separately forwarded.

We counted the numbers of configured DNS entries and
IPv6 addresses on the constructed NBVN for the bike race
event (Table II). 15 DNS entries for network nodes, and
1600 DNS entries for mobile terminals and/or IoT devices
are automatically configured. 36 IPv6 addresses for network
nodes, and 1600 IPv6 addresses for mobile terminals and/or
IoT devices are automatically configured. An IPv6 address is
assigned to each link of each network node, thus, The number
of IPv6 addresses is larger than that of DNS entries.

We also measured the construction time of the NBVN. The
construction time starts from the time when InPs start vnn.rb
on the first network node to the time when they start vnn.rb on
the last network node. In the current system, InPs sequentially
start vnn.rbs on the nodes. It took 52.18 seconds to starting
all the 15 nodes. Average time of starting one node is 3.48
seconds.

These results show that our proposed system constructs
an NBVN that consists of 15 network nodes with a name
resolution system within one minute. The names of mobile
terminals and IoT devices are pre-set in DNS, thus they can
communicate with each other by names. Furthermore, the
names of NBVN servers and NBVN nodes for operations of
ASP and VNO are automatically configured. These prove that
our proposed system practically constructs NBVNs that are
used for area/time-bound events.

We discuss the scalability of our proposed system. The
number of nodes in the actual infrastructure may reach million.
However, the number of nodes that are required for each
NBVN only reaches hundreds, since the NBVN is used for an
area-bound event, and the number of the attendees is restricted
to tens of thousands. The total starting time of an NBVN is
proportional to the number of the NBVN nodes. Therefore, it
is expected to take tens of minutes to construct the NBVN for
the event of tens of thousands attendees from our PoC network
experiments.

We suppose an event lasts for hours or days, thus construc-
tion of the NBVN within tens of minutes is practical. Our
system processes the requests in the manner of first come first
serve. Therefore, the system blocks the process of a newly-
arrived request until it finishes the process of another request.
Consequently, the process of the request may be postponed for
tens of minutes. However, this is not a problem for practical
use, since the network manager of ASP has only to send the
request tens of minutes or a few hours before the event.

VI. CONCLUSION

In this paper, we have proposed an automatic construction
mechanism of name-bound virtual networks (NBVNs) to be
used in IoT. We have defined ASP, VNO, and InP as the
business players behind the whole operation and exploitation
of NBVNs. We have also clarified the roles of ASP/VNO/InP
and the tasks to be performed by their network managers,

OMA-TS-LightweightM2M-V1_0-20170208-A Page 77 (138)

� 2017 Open Mobile Alliance All Rights Reserved.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-Spec-20170101-I]

Note: Throughout the present document the format of the MSISDN must be as specified in [3GPP-TS_23.003]. According to
this definition “+” is not preceding the country code.

LwM2M
Client

LwM2M
Server

POST/rd?ep=example-client

2.01 Created Location: /rd/5a3f

POST/rd/5a3f?It=600000

Registration

2.04 Changed

DELETE /rd/5a3f

2.02 Deleted

</1/1>,</1/2>,</2/0></2/1>,</3/0>,</4/0>

Update

De-register

Figure 21: Example register, update and de-register operation exchanges (shorthand in [CoAP] example style, actual
messages using CoAP binary headers)

8.2.5 Device Management & Service Enablement Interface
The Device Management & Service Enablement Interface is used to access Resource, an array of Resource Instances, an
Object Instance or all the Object Instances of an Object. An Object Instance is identified by the path /{Object ID}/{Object
Instance ID}. If Object doesn’t support multiple Object Instances, the Object Instance is identified by the path /{Object ID}/0.
A Resource is identified by the path /{Object ID}/{Object Instance ID}/{Resource ID}.

An Object Instance or Resource is Read by sending a CoAP GET to the corresponding path. The response includes the value
in the corresponding Plain Text, Opaque, TLV or JSON format according to the specified Content-Format (see section
6.4).The request MAY specify an Accept option containing the preferred Content-Format to receive. When the specified
Content-Format is not supported by the LwM2M Client, the request MUST be rejected.

An Object Instance or Resource is Written to by sending either a CoAP PUT or a CoAP POST to the corresponding path. The
request includes the value to be written in the corresponding Plain Text, Opaque, TLV or JSON format according to the
Content-Format option which MUST be specified [CoAP]. The Write request MUST be rejected when the specified Content-
Format is not supported by the LwM2M Client

A CoAP PUT is used for the Replace and CoAP POST is used for Partial Update mechanism of the “Write” operation as
described in 5.4.3.

A Resource is Executed by sending a CoAP POST to the corresponding path. The request MAY include a list of arguments
as value of the payload expressed in Plain Text format. The definition of the Executable Resource and its arguments is given
in Appendix D.

The list of argument can be empty, 2 arguments of the arguments list are separated by a comma. The syntax of the arguments
is provided in Section Execute (5.2.4).

Note that the behaviour of the “Execute” operation, whether it uses arguments and how those are interpreted, and how it
returns values is specified in the Resource description of the Object.

Names and Addresses assigned to
Mobile Terminals and IoT Devices�
n  ap101.race1 starts a DHCP

server with an address space of
2002:db8:3:6::/64, and provides
wireless access with SSID
containing domain name race1

n  Mobile terminals and IoT
devices searches SSID
containing race1, and connect
to NBVN race1.

n  According to DHCP, access
point ap101.race1 assigns IP
addresses and DNS names
such as mb1.ap101.race1 and
mb2.ap101.race1 to mobile
terminals and IoT devices

2017/11/16� �
�

AP1	
(ap101.race1)	

Mobile	terminal	
(mb2.ap101.race1)	

IoT	device	
(mb1.ap101.race1)	

mb1.ap101.race1	

Example Construction of Multiple
NBVNs on the Shared Infrastructure�

2017/11/16� ���
AP4	 AP5	 AP6	

RT1	

SW1	

SV1	 AP1	 AP2	 AP3	 AP4	 AP5	 AP6	

RT1	

SW1	

SV1	

InP1	 InP2	
VNO1	

INP1	 INP2	

RT1-INP1	 RT1-INP2	

InP1	 InP2	
VNO1	

INP1	 INP2	

SV101	

InP1	 InP2	

AP101	 AP102	

AP103	

AP104	

RT1-INP1	
	

AP106	AP105	

AP4-INP2	

AP107	
	

AP108	

RT1-INP2	

SW1-INP2	
SV2	SW1-INP1	

NBVN #3 (RACE1, 2002:db8:3::/48)
for a bike race event

	
sv101.race1.										300	IN	AAAA	2002:db8:3:2::3	
ap101.race1.										300	IN	AAAA	2002:db8:3:5::4	
ap102.race1.										300	IN	AAAA	2002:db8:3:3::5	
ap103.race1.										300	IN	AAAA	2002:db8:3:7::6	
(snip)	
mb1.ap101.race1.	300	IN	AAAA	2002:db8:3:6::2	
mb2.ap101.race1.	300	IN	AAAA	2002:db8:3:6::2	
(snip)	

NBVN #2 (VNO1, 2002:db8:2::/48)
for VNO1 to communicate with InP1/2

vno1.vno1. 300 IN AAAA 2002:db8:2:1::1
inp1.vno1. 300 IN AAAA 2002:db8:2:2::2
inp2.vno1. 300 IN AAAA 2002:db8:2:3::3

NBVN #1 (INP2, 2002:db8:1::/48)
for internal management of InP2

rt1.inp2. 300 IN AAAA 2002:db8:1:1::1
sw1.inp2. 300 IN AAAA 2002:db8:1:2::2
ap1.inp2. 300 IN AAAA 2002:db8:1:3::3
ap2.inp2. 300 IN AAAA 2002:db8:1:4::4
(snip)

RT1	
(rt1-inp2.race1)	

	

Constructed Bike Race Network�

n  We validated that our proposed system practically constructs NBVNs
n  It is expected to take tens of minutes to construct the NBVN for the

event of tens of thousands attendees from our PoC network
experiments

2017/11/16� ���

NBVN	#3	for	bike	race	event	(2002:db8:3::/48)	

AP4	
(ap102.race1)	

	

AP5	
(ap107.race1)	

	

SV1	
(sv101.race1)	

InP1	 InP2	

AP1	
(ap101.race1)	

AP5	
(ap103.race1)	

	

AP6	
(ap104.race1)	

RT1	
(rt1-inp1.race1)	

	

AP3	
(ap106.race1)	

AP1	
(ap105.race1)	

AP4	
(ap4-inp2.race1)	

AP6	
(ap108.race1)	

SW1	
(sw1-inp2.race1)	SV1	

(sv102.race1)	SW1	
(sw1-inp1.race1)	

Journal of Information Processing Vol.22 No.4 1–10 (July 2014)

ap108.race1$ traceroute6 ap101.race1
traceroute to ap101.race1 (2002:db8:3:48::17) from...
1 ap107.race1 (2002:db8:3:70::24) 0.162 ms...
2 ap4-inp2.race1 (2002:db8:3:54::1c) 0.187 ms...
3 rt1-inp2.race1 (2002:db8:3:68::21) 0.293 ms...
4 rt1-inp1.race1 (2002:db8:3:1c::9) 0.337 ms...
5 sw1-inp1.race1 (2002:db8:3:44::16) 0.316 ms...
6 ap101.race1 (2002:db8:3:48::17) 0.227 ms...
(snip)
vno1.vno1$ traceroute6 inp2.vno1
traceroute to inp2.vno1 (2002:db8:2:24::c) from...
1 rt1-inp1.vno1 (2002:db8:2:8::4) 0.255 ms...
2 rt1-inp2.vno1 (2002:db8:2:1c::a) 0.307 ms...
3 inp2.vno1 (2002:db8:2:24::c) 0.306 ms...
(snip)
inp1.inp1$ traceroute6 ap6.inp1
traceroute to ap6.inp1 (2002:db8:1:54::1c) from...
1 rt1.inp1 (2002:db8:1:8::4) 0.208 ms...
2 ap4.inp1 (2002:db8:1:1c::9) 0.11 ms...
3 ap5.inp1 (2002:db8:1:3c::13) 0.173 ms...
4 ap6.inp1 (2002:db8:1:54::1c) 0.134 ms...

Fig. 15 Traceroute in each NBVN

Table 2 System evaluation

Construction Average time
DNS IP time of of starting
entries addresses NBVN (sec) one node (sec)

15 36
Race event NBVN (+1600) (+1600) 34.15 2.28
VNO/InPs
management NBVN 5 8 13.29 2.66
InP1
management NBVN 11 20 26.19 2.38
InP2
management NBVN 10 18 23.27 2.38

These results show that our proposed system constructs an
NBVN that consists of 15 network nodes with a name resolu-
tion system within one minute. The names of mobile terminals
and IoT devices are pre-set in DNS, thus they can communicate
with each other by names. Furthermore, the names of NBVN
servers and NBVN nodes for operations of ASP and VNO are
automatically configured. These prove that our proposed system
practically constructs NBVNs that are used for area/time-bound
events.

We discuss the scalability of our proposed system. The num-
ber of nodes in the actual infrastructure may reach million. How-
ever, the number of nodes that are required for each NBVN only
reaches hundreds, since the NBVN is used for an area-bound
event, and the number of the attendees may be in the order of tens
of thousands. The total starting time of an NBVN is proportional
to the number of the NBVN nodes. Therefore, it is expected to
take tens of minutes to construct the NBVN for the event of tens
of thousands attendees from our PoC network experiments.

We suppose an event lasts for hours or days, thus construction
of the NBVN within tens of minutes is practical. Our system pro-
cesses the requests in the manner of first come first serve. There-
fore, the system blocks the process of a newly-arrived request
until it finishes the process of another request. Consequently,
the process of the request may be postponed for tens of minutes.
However, this is not a problem for practical use, since the network
manager of ASP has only to send the request tens of minutes or a
few hours before the event.

7. Conclusion
In this paper, we have proposed an automatic construction

mechanism of name-bound virtual networks (NBVNs) to be used
in IoT. We have defined ASP, VNO, and InP as the business play-
ers behind the whole operation and exploitation of NBVNs. We
have also clarified the roles of ASP/VNO/InP and the tasks to
be performed by their network managers, also proposing the re-
quired interactions among them. We have developed a poof-of-
concept system that implements the operations of ASP/VNO/InP,
and automatically constructs NBVNs.

In the NBVNs, the required IPv6 addresses are automatically
allocated to the network nodes and IoT devices, and the data for-
warding and name resolution mechanisms are also automatically
configured. Thus, the system is able to provide both area-bound
and time-bound event-oriented NBVNs to IoT applications such
as outdoor concerts and sporting events. In our experimental de-
ployment, thousands of addresses and name entries are automati-
cally configured on an NBVN within a minute, allowing IoT de-
vices to communicate with each other by their names. ASP/VNO
only need names to operate the servers, switches and routers
present in their NBVNs. Furthermore, our system constructs the
name-bound management networks for wide areas with requiring
very few tasks for the network managers.

For future work, we will define, design and implement methods
for the InP to inform the VNO of the network resources such as
bandwidth, delay and CPU, in addition to access point locations
and the server memory/storage resources. We will also design a
mechanism of VNO’s probing whether the requested NBVN is to
be satisfied with provisioned resources by InPs, before the actual
allocation request. Moreover, we will collaborate with organiza-
tions and companies to deploy our system as a component in real
IoT services and applications.

References
[1] Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M.: Internet of

Things (IoT): A vision, architectural elements, and future directions,
Future Generation Computer Systems, Vol. 29, No. 7, pp. 1645–1660
(2013).

[2] Mell, P. and Grance, T.: The NIST definition of cloud computing,
https://www.nist.gov/programs-projects/cloud-computing (2011).

[3] Bakshi, K.: Considerations for software defined networking (SDN):
approaches and use cases, Aerospace Conference, 2013 IEEE, pp. 1–9
(2013).

[4] Schaffrath, G., Werle, C., Papadimitriou, P., Feldmann, A., Bless, R.,
Greenhalgh, A., Wundsam, A., Kind, M., Maennel, O. and Mathy,
L.: Network virtualization architecture: proposal and initial prototype,
Proceedings of the 1st ACM workshop on Virtualized infrastructure
systems and architectures, pp. 63–72 (2009).

[5] Open Connectivity Foundataion: (https://openconnectivity.org).
[6] Open Mobile Alliance: (http://www.openmobilealliance.org/).
[7] Bonomi, F., Milito, R., Zhu, J. and Addepalli, S.: Fog computing and

its role in the Internet of things, Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, pp. 13–16 (2012).

[8] Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T.,
Iamnitchi, A., Barcellos, M., Felber, P. and Riviere, E.: Edge-centric
computing: Vision and challenges, ACM SIGCOMM Computer Com-
munication Review, Vol. 45, No. 5, pp. 37–42 (2015).

[9] Hawilo, H., Shami, A., Mirahmadi, M. and Asal, R.: NFV: state of
the art, challenges, and implementation in next generation mobile net-
works (vEPC), IEEE Network, Vol. 28, No. 6, pp. 18–26 (2014).

[10] Dong, M., Kimata, T. and Zettsu, K.: Service-controlled networking:
Dynamic in-network data fusion for heterogeneous sensor networks,
2014 IEEE 33rd International Symposium on Reliable Distributed
Systems Workshops, pp. 94–99 (2014).

c⃝ 2014 Information Processing Society of Japan 9

Conclusions�

n  Proposed an automatic construction mechanism of NBVNs for IOT
n  Re-defined ASP, VNO, and InP, and proposed the roles of ASP/VNO/

InP and the required interactions among them
n  Developed a poof-of-concept system that implements the operations

of ASP/VNO/InP, and automatically constructs NBVNs.
Ø  IPv6 addresses are automatically assigned to the network nodes

and IoT devices
Ø The data forwarding and name resolution mechanisms are also

automatically configured
n  The automatic construction system of NBVNs enables area-/time-

bound event-oriented NBVNs for IoT applications such as outdoor
concerts and sporting events

Future work
n  Network resource (e.g. bandwidth/delay) management
n  Function of polling network resources

2017/11/16� ���

Packet Formats and Protocol Formats�

2017/11/16� ���

VLAN-bound VN Implemented Name-bound VN Essential Name-bound VN

Eth	header	
VLAN#1	

IP	header	
	

Payload	
	

Eth	header	
	

IP	header	
2002:db8:1	

Name	header	
Domain#1	

Payload	
	

Payload	
	

Physical	Layer	

VLAN#1	 VLAN#2	

IP	 IP	

TCP	 UDP	

DNS	

IoT	App.	

TCP	 UDP	

DNS	

IoT	App.	

Physical	Layer	

TCP	 UDP	

DNS	

IoT	App.	

TCP	 UDP	

DNS	

IoT	App.	

Datalink	Layer	
Physical	Layer	

Domain#1	 Domain#2	

IoT	App.	 IoT	App.	

Datalink	Layer	

Current	system	sets	up	 Proposed	system	sets	up	

IP	2002:db8:1	 IP	2002:db8:2	

