

Automatic Construction of Name-Bound Virtual Networks for IoT

Kenji Fujikawa <hudikaha@nict.go.jp>
Ved P. Kafle,
Pedro Martinez-Julia,
Abu Hena Al Muktadir
Hiroaki Harai

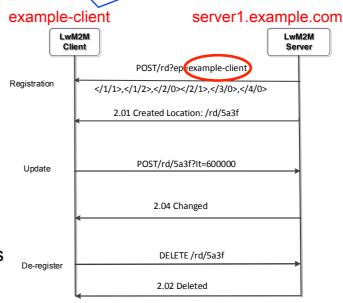
National Institute of Information and Communications Technology (NICT)

2017/11/16

Contents

- Backgrounds
 - ➤ Who specifies the names of IoT devices?
 - > Who operates naming and addressing for VNs?
- Objectives of Name-Bound Virtual Network (NBVN)
- Proposal of Business Players ASP/VNO/InP Roles and Interactions
- Example Construction of NBVN (a Bike Race Network)
 - > VNO Configuration
 - > ASP's request to VNO
 - > Request from VNO (vno.rb) to InP1 (inb.rb)
 - > Executed Vnn.rb Command on Each Node
 - > Assigned Names/Addresses to be Used within the NBVN
- Example Construction of Multiple NBVNs on the Shared Infrastructure
- Conclusions and Future work

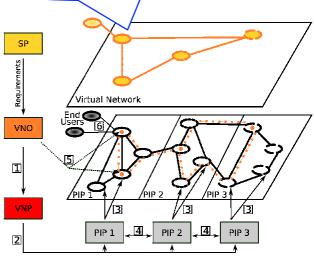
Backgrounds (1)


- Networks are constructed for various IoT services
 - > e.g. connected vehicles and smart city, etc.

- IoT communication APIs are defined by some organizations
 - loT devices are recognized by names
 - Who specifies the names of IoT devices when constructing IoT network using a virtual network?

Who specifies the names of IoT devices?

[1] OMA Alliance, Lightweight Machine to Machine Technical Specification, Approved Version 1.0 – 08 Feb 2017


2017/11/16

Backgrounds (2)

 Business players for constructing Virtual Networks (VNs) are defined [2]

- Service Provider (SP)
- Virtual Network Operator (VNO)
- Virtual Network Provider (VNP)
- Physical Infrastructure Provider (PIP)
- It is not clear who operates naming, addressing, and configuration of name resolution system for the constructed VN?
 - Is the human network manager of VNO responsible for these operations?

Who operates naming and addressing for VNs?

[2] G. Schaffrath, at el., "Network Virtualization Architecture: proposal and initial prototype," Proc. of the 1st ACM workshop on Virtualized infrastructure systems and architectures, 2009.

4

→ Propose a method for automatic construction of VNs with named components and name resolution system, called Name-Bound Virtual Network (NBVN)
2017/11/16

Objectives of NBVN (Name-Bound Virtual Network)

Construct NBVNs for IoT services such as outdoor concerts and sporting events

- Those services are area-bound and time-bound (may last for hours or days)
- > Quick construction is required
- > Automation is important

Audience

- For the automatic construction of NBVNs, re-define business players, and propose their roles and interactions between them
 - > Especially, clarify which player operates naming, addressing and construction of a name resolution mechanism for NBVNs
 - Manual operations are avoided as far as possible
- Design and Implement a simple proof-of-concept system

2017/11/16 5

Business Players and Information Flows

InP B

- Re-define business players
 - ➤ Application Service Provider (ASP)
 - Virtual Network Operator (VNO)

Infrastructure Provider (InP)

ASP #1 ASP #22 **ASP #21 NBVN NBVN NBVN** #21 VNO #2 VNO #1

InP A

Proposal of ASP/VNO/InP Roles and **Interactions** Network manager of ASP. VNO or InP ■ ASP manager specifies access point locations and Server of VNO, InP ASP storage/computational or NBVN server specifications ■ VNO specifies network (2) Request: recognize/operate AP locations nodes and servers with NBVN servers by specs of servers names to be used in NBVN network resources Addresses/names are VNO event duration automatically assigned operate (3) Request: names of APs operate NBVN names and specs **NBVN** nodes by names of servers #21 network resources duration (1) Inform in advance: names and locations

InP2

Proposal of ASP/VNO/InP Roles and

InP1

automatic construction of NBVN

IoT devices

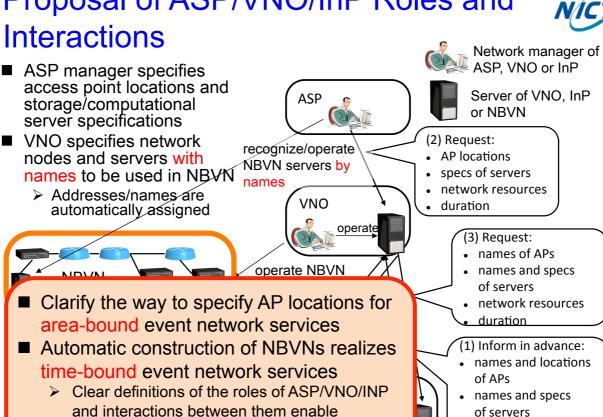
2017/11/16

use names for

communication

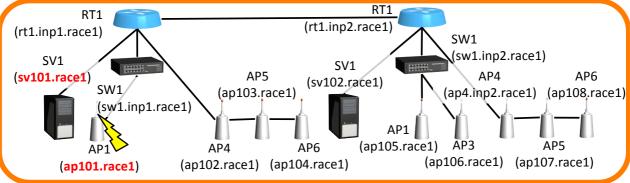
of APs

of servers


of servers

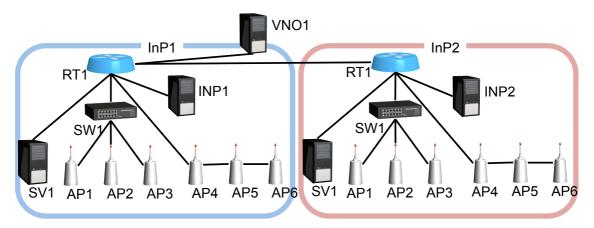
rough information of network resources

names and specs


rough information

of network resources.

Example Construction of NBVN (a Bike Race Event Network)


- Network node names are assigned by VNO
 - ➤ e.g. ap101.race1 sv101.race1
- IoT device names are assigned according to the AP names

➤ e.g. mb1.ap101.race1 mb2.ap101.race1

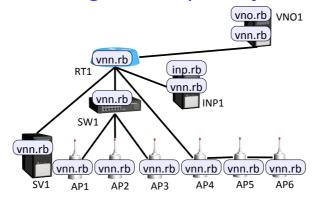
2017/11/16

Infrastructure Networks

SV1: Server (for service in NBVN)

RT1: L3 router SW1: L3 switch AP1-AP6: Access points

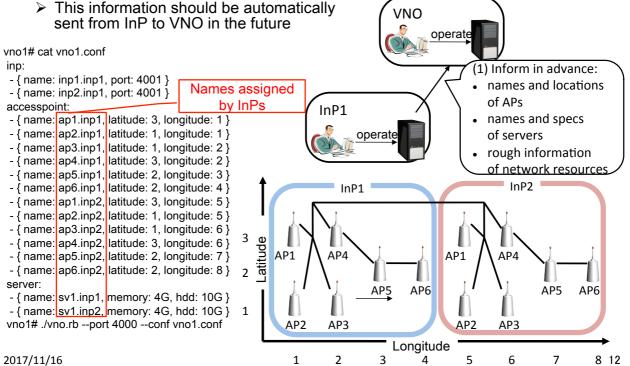
INP1,INP2: InP server (for management)
VNO1: VNO server (for management)


■ Each InP assigns names to network nodes within the InP

➤ Note that ASP can assign different names in NBVN 2017/11/16

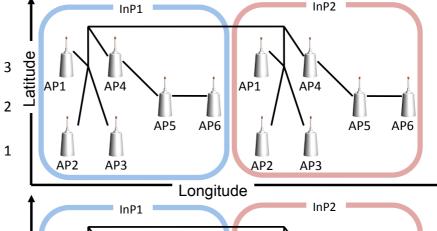
10

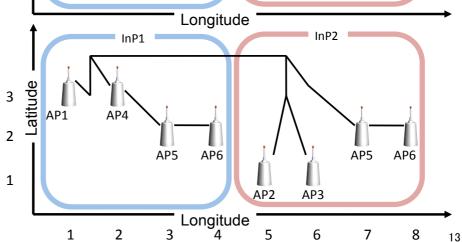
Developed Programs (Ruby Scripts)


- vnn.rb: Virtual Network Node Script
- inp.rb: Infrastructure Provider Server Script
- vno.rb: Virtual Network Operator Server Script
 - Read JSON- or YAML-formated data

2017/11/16

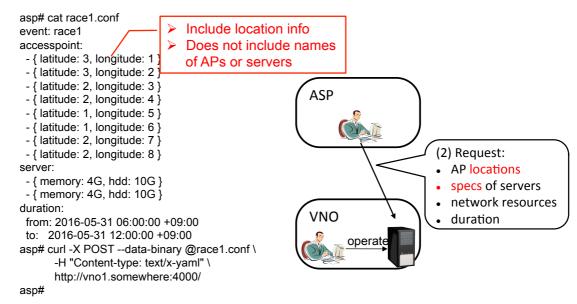
VNO Configuration (vno.rb)


 Vno.rb is configured with information about InP servers (inp.rb), AP names and locations, computational/storage server names and specs


Access Points Required for a Bike Race Event

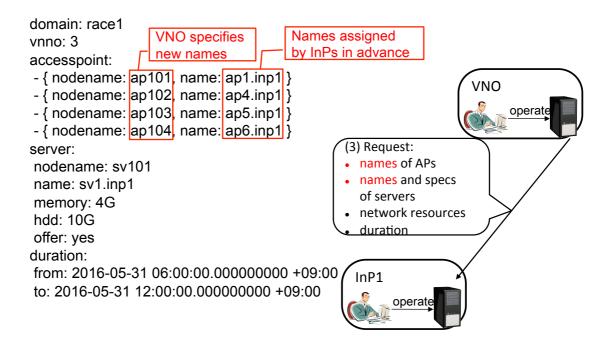
■ AP locations from the satellite view

APs required for covering a bike race event



2017/11/16

ASP's request to VNO (vnn.rb)


- ASP sends a request to VNO
 - > The network manager of ASP grasps the required locations for the access points, however does not know the names of the access points in those locations

Request from VNO (vno.rb) to InP1 (inb.rb)

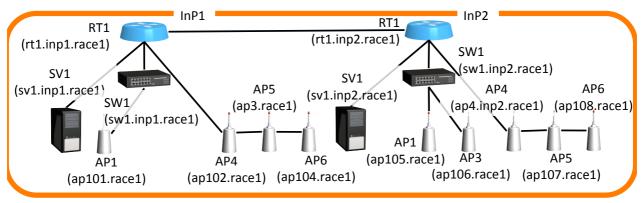
■ Request includes actual names of access point and server names in InP1

2017/11/16

Executed Vnn.rb Command on Each Node and Assigned Names/Addresses to be Used within the NBVN

InP1 executes vnn.rb on each node

```
Names assigned by InPs in advance

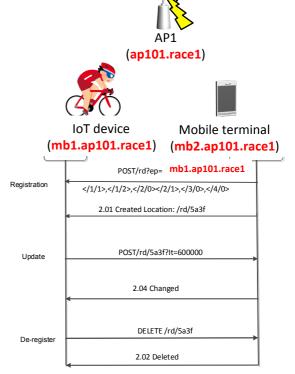

sv1.inp1# vnn.rb --nodename ap1.inp1# vnn.rb --nodename ap4.inp1# vnn.rb --nodename ap5.inp1# vnn.rb --nodename ap6.inp1# vnn.rb --nodename ap6.inp1# vnn.rb --nodename ap103 --vnno 3 --req eth1,eth2 --dhcps eth3 ap104 --vnno 3 --req eth1 --dhcps eth3
```

- IPv6 addresses are automatically assigned to all the network nodes
- IPv6 forwarding tables are also configured
- Name resolution system (DNS) is simultaneously/automatically configured

```
Names specified by VNO
        These names are used within NBVN
sv101.race1.
                  300 IN AAAA 2002:db8:3:2::3
                  300 IN AAAA 2002:db8:3:5::4
ap101.race1.
                  300 IN AAAA 2002:db8:3:3::5
ap102.race1.
ap103.race1.
                  300 IN AAAA 2002:db8:3:7::6
                                                Names for IoT devices, of which
ap104.race1.
                  300 IN AAAA 2002:db8:3:8::7
                                                base name is specified by VNO
mb1.ap101.race1.
                  300 IN AAAA 2002:db8:3:6::2
mb2.ap101.race1. 300 IN AAAA 2002:db8:3:6::2
```

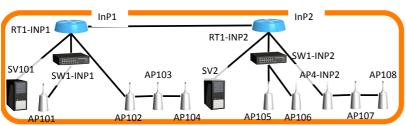
Constructed Bike Race Network

NBVN #3 for bike race event (2002:db8:3::/48)


DNS entries	IP addresses	Construction time of NBVN (sec)
15 (+1600)	36 (+1600)	52.18 (avg. 3.48)

- We validated that our proposed system practically constructs NBVNs that are used for area/time-bound events
- It is expected to take tens of minutes to construct the NBVN for the event of tens of thousands attendees from our PoC net experiments

2017/11/16

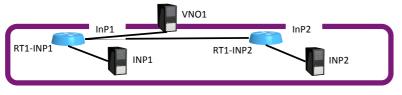

Names and Addresses assigned to Mobile Terminals and IoT Devices

- ap101.race1 starts a DHCP server with an address space of 2002:db8:3:6::/64, and provides wireless access with SSID containing domain name race1
- Mobile terminals and IoT devices searches SSID containing race1, and connect to NBVN race1.
- According to DHCP, access point ap101.race1 assigns IP addresses and DNS names such as mb1.ap101.race1 and mb2.ap101.race1 to mobile terminals and IoT devices

Example Construction of Multiple NBVNs on the Shared Infrastructure

NBVN #3 (RACE1, 2002:db8:3::/48) for a bike race event

 sv101.race1.
 300 IN AAAA 2002:db8:3:2::3

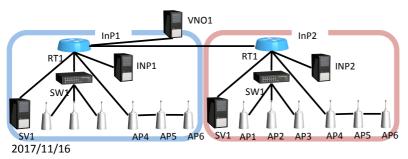

 ap101.race1.
 300 IN AAAA 2002:db8:3:5::4

 ap102.race1.
 300 IN AAAA 2002:db8:3:3::5

 ap103.race1.
 300 IN AAAA 2002:db8:3:7::6

 (snip)
 300 IN AAAA 2002:db8:3:7::6

mb1.ap101.race1. 300 IN AAAA 2002:db8:3:6::2 mb2.ap101.race1. 300 IN AAAA 2002:db8:3:6::2 (snip)

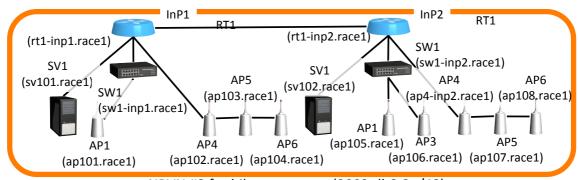


NBVN #2 (VNO1, 2002:db8:2::/48) for VNO1 to communicate with InP1/2

 vno1.vno1.
 300 IN AAAA 2002:db8:2:1::1

 inp1.vno1.
 300 IN AAAA 2002:db8:2:2::2

 inp2.vno1.
 300 IN AAAA 2002:db8:2:3::3



NBVN #1 (INP2, 2002:db8:1::/48) for internal management of InP2

rt1.inp2. 300 IN AAAA 2002:db8:1:1::1 sw1.inp2. 300 IN AAAA 2002:db8:1:2::2 ap1.inp2. 300 IN AAAA 2002:db8:1:3::3 ap2.inp2. 300 IN AAAA 2002:db8:1:4::4 (snip)

Constructed Bike Race Network

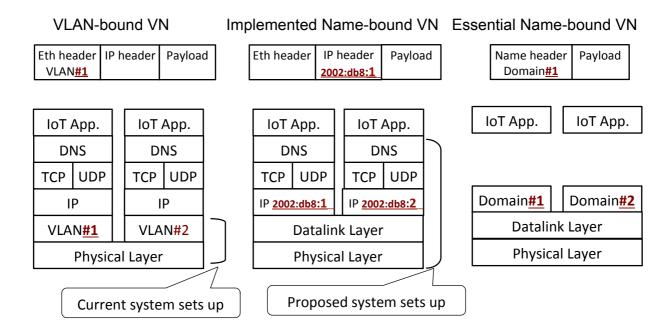
NBVN #3 for bike race event (2002:db8:3::/48)

			Construction	Average time
	DNS	IP	time of	of starting
	entries	addresses	NBVN (sec)	one node (sec)
	15	36		
Race event NBVN	(+1600)	(+1600)	34.15	2.28

- We validated that our proposed system practically constructs NBVNs
- It is expected to take tens of minutes to construct the NBVN for the event of tens of thousands attendees from our PoC network experiments

Conclusions

- Proposed an automatic construction mechanism of NBVNs for IOT
- Re-defined ASP, VNO, and InP, and proposed the roles of ASP/VNO/InP and the required interactions among them
- Developed a poof-of-concept system that implements the operations of ASP/VNO/InP, and automatically constructs NBVNs.
 - ➤ IPv6 addresses are automatically assigned to the network nodes and IoT devices
 - ➤ The data forwarding and name resolution mechanisms are also automatically configured
- The automatic construction system of NBVNs enables area-/timebound event-oriented NBVNs for IoT applications such as outdoor concerts and sporting events


Future work

- Network resource (e.g. bandwidth/delay) management
- Function of polling network resources

2017/11/16

Packet Formats and Protocol Formats

